ECE1 : Correction du Devoir Surveillé n°3

Questions de cours:

n\p	0	1	2	3	4	5
1	1	1				
2	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	
5	1	5	10	10	5	1

Formule du binôme de Newton : Pour tout $n \ge 1$, pour tous réels a et b, $(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$

Donc
$$(a + b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

Exercice 1

program produit;

var i,n:integer;

p:real;

begin

writeln('Donnez un entier n');

readln(n);

p:=1;

for i:=1 to n do p:=p*(1+sqrt(i*i+1));

writeln('Le produit vaut ',p);

readln;

end.

Exercice 2

1) Pour chaque lettre, il y a 26 possibilités. Donc $card(E) = 26^7$

2) Avec des lettres différentes, il y a : $A_{26}^7 = 26 \times 25 \times 24 \times 23 \times 22 \times 21 \times 20$ possibilités.

3) Choix des places pour la lettre K : $\binom{7}{4} = \frac{7!}{4!3!} = \frac{7 \times 6 \times 5}{3 \times 2} = 35$

Choix des 3 autres lettres : 25^3 En tout : 35×25^3

4) Exactement 4 K: 35×25^3 Exactement 5 K: $\binom{7}{5} \times 25^2 = 21 \times 25^2$

Exactement 6 K: $\binom{7}{6} \times 25 = 7 \times 25$ Exactement 7 K: 1

En tout : $35 \times 25^3 + 21 \times 25^2 + 7 \times 25 + 1$

5) Place des 2 voyelles : $\binom{7}{2} = 21$ Choix des 2 voyelles : 6^2 Choix des 5 consonnes : 20^5 En tout : $21 \times 6^2 \times 20^5$ possibilités.

Exercice 3

1) a) Tirages simultanés : card(
$$\Omega$$
) = $\binom{9}{4}$ = $\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2}$ = $9 \times 2 \times 7$ = 126

Boule n°1: 1 poss. Choix des 3 autres boules: $\binom{8}{3} = \frac{8 \times 7 \times 6}{3 \times 2} = 8 \times 7 = 56$

$$P(A) = \frac{8 \times 7}{18 \times 7} = \frac{4}{9}$$

b) Choix des 2 autres boules : $\binom{7}{2} = \frac{7 \times 6}{2} = 7 \times 3 = 21$ poss Donc P(B) = $\frac{3 \times 7}{9 \times 2 \times 7} = \frac{1}{6}$

c) Aucune boule rouge : $\binom{5}{4} = 5$ poss. Aucune boule verte : $\binom{4}{4} = 1$ poss.

Au moins une boule de chaque couleur : 126 - 5 - 1 = 120 Donc P(C) = $\frac{120}{126} = \frac{20}{21}$

d) Choix des 3 vertes : $\binom{5}{3} = \frac{5 \times 4 \times 3}{3 \times 2} = 10$ poss Choix de la rouge : 4 poss

Donc P(C) =
$$\frac{40}{126} = \frac{20}{63}$$

2) a) Tirages successifs sans remise : $A_9^4 = 9 \times 8 \times 7 \times 6 (= 3024)$

Première verte au 3^{ème} tirage, donc 2 boules rouges aux 1^{er} et 2^e tirages

card(A) =
$$4 \times 3 \times 5 \times 6$$
 (=360) $P(A) = \frac{4 \times 3 \times 5 \times 6}{9 \times 8 \times 7 \times 6} = \frac{5}{42}$

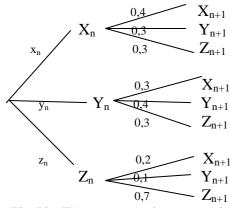
b) Deuxième verte au 4ème tirage, donc : VRRV ou RVRV ou RRVV

$$P(B) = \frac{3 \times (5 \times 4 \times 3 \times 4)}{9 \times 8 \times 7 \times 6} = \frac{5}{21}$$

$$P(R_2) = P(V_1)P_{V1}(R_2) + P(R_1)P_{R1}(R_2) = \frac{5}{9} \times \frac{4}{9} + \frac{4}{9} \times \frac{1}{2} = \frac{20}{81} + \frac{18}{81} = \frac{38}{81}$$

Exercice 4

1. Soit X_n , Y_n , Z_n les événements : Le mois n, le consommateur utilise $X,\,Y,\,Z$.



 $(X_n,\,Y_n,\,Z_n)$ est un système complet d'événements.

D'après la formule des probabilités totales,

$$x_{n+1} = P(X_{n+1}) = P(X_n)P_{Xn}(X_{n+1}) + P(Y_n)P_{Yn}(X_{n+1}) + P(Z_n)P_{Zn}(X_{n+1})$$

$$x_{n+1} = x_n \times 0.4 + y_n \times 0.3 + z_n \times 0.2$$

De la même manière, $y_{n+1} = P(\boldsymbol{Y}_{n+1}) = 0.3\boldsymbol{x}_n + 0.4\boldsymbol{y}_n + 0.1\boldsymbol{z}_n$

$$z_{n+1} = P(Z_{n+1}) = 0.3x_n + 0.3y_n + 0.7z_n. \label{eq:zn+1}$$

2. (X_n, Y_n, Z_n) forment un système complet d'événements, donc $x_n + y_n + z_n = 1$.

Donc $z_n = 1 - x_n - y_n$.

$$x_{n+1} = 0.4x_n + 0.3y_n + 0.2(1 - x_n - y_n) = 0.2x_n + 0.1y_n + 0.2$$

$$y_{n+1} = 0.3x_n + 0.4y_n + 0.1(1 - x_n - y_n) = 0.2x_n + 0.3y_n + 0.1. \label{eq:yn-1}$$

3. a)
$$a_{n+1} = 2x_{n+1} - y_{n+1} = 2(0.2x_n + 0.1y_n + 0.2) - (0.2x_n + 0.3y_n + 0.1) = 0.2x_n - 0.1y_n + 0.3 = 0.1(2x_n - y_n) + 0.1 = 0.1a_n + 0.3.$$

Donc (a_n) est une suite arithmético-géométrique.

Point fixe :
$$c = 0.1c + 0.3 \Leftrightarrow 0.9c = 0.3 \Leftrightarrow c = \frac{0.3}{0.9} = \frac{1}{3}$$
.

Donc
$$u_n = a_n - \frac{1}{3}$$
 est géométrique de raison $q = \frac{1}{10}$.

Comme
$$a_0 = 2x_0 - y_0 = 0$$
, $u_0 = -\frac{1}{3}$. $u_n = \frac{u_0}{10^n} = -\frac{1}{3 \times 10^n}$ $a_n = \frac{1}{3} - \frac{1}{3 \times 10^n}$

b)
$$b_{n+1}=x_{n+1}+y_{n+1}=04x_n+0.4y_n+0.3=0.4b_n+0.3$$
 Donc (b_n) est une suite arithmético-géométrique.

Point fixe :
$$c = 0.4c + 0.3 \Leftrightarrow 0.6c = 0.3 \Leftrightarrow c = \frac{0.3}{0.6} = \frac{1}{2}$$
.

Donc
$$v_n = b_n - \frac{1}{2}$$
 est géométrique de raison $q = \frac{2}{5}$.

$$v_0 = b_0 - \frac{1}{2} = x_0 + y_0 - \frac{1}{2} = -\frac{1}{5}$$
. Donc $v_n = v_0 \times \left(\frac{2}{5}\right)^n = -\frac{1}{5}\left(\frac{2}{5}\right)^n$ $b_n = \frac{1}{2} - \frac{1}{5}\left(\frac{2}{5}\right)^n$

c)
$$\begin{cases} a_n = 2x_n - y_n \\ b_n = x_n + y_n \end{cases}$$
 donc par somme : $a_n + b_n = 3x_n$

Donc
$$x_n = \frac{a_n + b_n}{3}$$
 et $y_n = b_n - x_n = \frac{3b_n}{3} - \frac{a_n + b_n}{3} = \frac{2b_n - a_n}{3}$

$$x_n = \frac{\frac{1}{3} - \frac{1}{3 \times 10^n} + \frac{1}{2} - \frac{1}{5} \left(\frac{2}{5}\right)^n}{3} = -\frac{1}{9 \times 10^n} - \frac{1}{15} \left(\frac{2}{5}\right)^n + \frac{5}{18}$$

$$y_n = \frac{1 - \frac{2}{5} \left(\frac{2}{5}\right)^n - \frac{1}{3} + \frac{1}{3 \times 10^n}}{3} = \frac{2}{9} - \frac{2}{15} \left(\frac{2}{5}\right)^n + \frac{1}{9 \times 10^n}$$

d)
$$z_n = 1 - x_n - y_n = 1 - \frac{5}{18} - \frac{2}{9} + \left(\frac{2}{5}\right)^n \left(\frac{1}{15} + \frac{2}{15}\right) = \frac{1}{2} + \frac{1}{5}\left(\frac{2}{5}\right)^n$$

4.
$$-1 < \frac{2}{5} < 1$$
 et $-1 < \frac{1}{10} < 1$, donc $\lim_{n \to +\infty} x_n = \frac{5}{18}$ $\lim_{n \to +\infty} y_n = \frac{2}{9}$ $\lim_{n \to +\infty} z_n = \frac{1}{2}$.

A long terme, les probabilités d'utiliser X, Y et Z sont proches respectivement de 5/18, 2/9 et 1/2.

Exercice 4 1) Chaque convive a le choix entre 3 menus. En tout $card(\Omega) = 3^n$ Soit A = "ils choisissent tous le même menu"

$$P(A) = P(\text{tous } M_1) + P(\text{tous } M_2) + P(\text{tous } M_3) = \frac{1}{3^n} + \frac{1}{3^n} + \frac{1}{3^n} = \frac{3}{3^n}$$

2) P(au moins deux menu) = P(
$$\overline{A}$$
) = 1 – P(A) = 1 – $\frac{3}{3^n}$

3) a)
$$M_1$$
 = "Menu M_1 pas demandé" $P(M_1) = \frac{2^n}{3^n}$ (tout le monde prend M_2 ou M_3)

b)
$$P(M_1 \cap M_2) = \frac{1}{3^n}$$
 (tout le monde prend M_3)

c) Soient
$$A_1$$
, A_2 , A_3 trois événements quelconques Alors $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$

d)
$$M_1 \cup M_2 \cup M_3 =$$
 "au moins l'un des trois menus n'est pas choisi"

$$P(M_1 \cup M_2 \cup M_3) = \frac{2^n}{3^n} + \frac{2^n}{3^n} + \frac{2^n}{3^n} - \frac{1}{3^n} - \frac{1}{3^n} - \frac{1}{3^n} + 0 = \frac{3 \times 2^n - 3}{3^n}$$

$$P("les trois menus sont choisis") = 1 - P(M_1 \cup M_2 \cup M_3) = 1 - 3 \times \left(\frac{2}{3}\right)^n + \frac{3}{3^n}$$